3. Trigonometry

d. Trig Identities

2. Parity, Complementarity and Supplementarity Identities

Parity Identities

Sine is an odd function and cosine is an even function: \[ \sin(-\theta)=-\sin(\theta) \qquad \cos(-\theta)=\cos(\theta) \] \(\Leftarrow\Leftarrow\) Read it! It simply explains the plot.

prop_parity_anim
Parity

Looking at the figure, the ray at the angle \(\theta\) hits the circle at the point \((x,y)\), while the ray at the angle \(-\theta\) hits the circle at the point \((x,-y)\). So: \[ \sin(\theta)=\dfrac{y}{r} \quad \text{while} \quad \sin(-\theta)=\dfrac{-y}{r}=-\sin(\theta) \] and \[ \cos(\theta)=\dfrac{x}{r} \quad \text{while} \quad \cos(-\theta)=\dfrac{x}{r}=\cos(\theta) \]

The parity of \(\sin\) and \(\cos\) can also be understood by looking at their plots.

prop_parity_sin_anim
\(\sin(-\theta)=-\sin(\theta)\)
prop_parity_cos_anim
\(\cos(-\theta)=\cos(\theta)\)

As a consequence:

Tangent, cotangent and cosecant are odd functions and secant is an even function: \[ \tan(-\theta)=-\tan(\theta) \qquad \cot(-\theta)=-\cot(\theta) \] \[ \sec(-\theta)=\sec(\theta) \qquad \quad \csc(-\theta)=-\csc(\theta) \] \(\Leftarrow\Leftarrow\) It's a simple computation.

\[ \tan(-\theta)=\dfrac{\sin(-\theta)}{\cos(-\theta)} =\dfrac{-\sin(\theta)}{\cos(\theta)}=-\tan(\theta) \] \[ \cot(-\theta)=\dfrac{\cos(-\theta)}{\sin(-\theta)} =\dfrac{\cos(\theta)}{-\sin(\theta)}=-\cot(\theta) \] \[ \sec(-\theta)=\dfrac{1}{\cos(-\theta)} =\dfrac{1}{\cos(\theta)}=\sec(\theta) \qquad \] \[ \csc(-\theta)=\dfrac{1}{\sin(-\theta)} =\dfrac{1}{-\sin(\theta)}=-\csc(\theta) \]

Complementarity Identities

The complementary angle for \(\theta\) is \(90^\circ-\theta\) or \(\dfrac{\pi}{2}-\theta\). \[ \sin\left(\dfrac{\pi}{2}-\theta\right)=\cos(\theta) \qquad \cos\left(\dfrac{\pi}{2}-\theta\right)=\sin(\theta) \] \(\Leftarrow\Leftarrow\) Read it! It simply explains the plot.

prop_comp_anim

Looking at the figure, if the angle \(\theta\) is measured counterclockwise from the positive \(x\)-axis, then the complementary angle \(\dfrac{\pi}{2}-\theta\) can be measured clockwise from the positive \(y\)-axis. So switching from an angle to its complement is equivalent to a reflection through the \(45^\circ\) diagonal line. This means that the roles of \(x\) and \(y\) are interchanged. (The opposite and adjacent sides are interchanged.) So: \[\begin{aligned} \sin\left(\dfrac{\pi}{2}-\theta\right) &=\dfrac{\text{Opp}}{\text{Hyp}} =\dfrac{x}{r} \\ \cos(\theta) &=\dfrac{\text{Adj}}{\text{Hyp}} =\dfrac{x}{r} \end{aligned}\] and \[\begin{aligned} \cos\left(\dfrac{\pi}{2}-\theta\right) &=\dfrac{\text{Adj}}{\text{Hyp}} =\dfrac{y}{r} \\ \sin(\theta) &=\dfrac{\text{Opp}}{\text{Hyp}} =\dfrac{y}{r} \end{aligned}\]

The complementarity identities can also be understood by comparing the plot of \(\sin(\theta)\) with that of \(\cos\left(\dfrac{\pi}{2}-\theta\right)\) and the plot of \(\cos(\theta)\) with that of \(\sin\left(\dfrac{\pi}{2}-\theta\right)\).

prop_parity_sin_anim
\(\sin(\theta)\)
prop_parity_cos_anim
\(\cos(\theta)\)
prop_parity_sin_anim
\(\cos\left(\dfrac{\pi}{2}-\theta\right)\)
prop_parity_cos_anim
\(\sin\left(\dfrac{\pi}{2}-\theta\right)\)

As a consequence:

\[ \tan\left(\dfrac{\pi}{2}-\theta\right)=\cot(\theta) \qquad \cot\left(\dfrac{\pi}{2}-\theta\right)=\tan(\theta) \] \[ \sec\left(\dfrac{\pi}{2}-\theta\right)=\csc(\theta) \qquad \csc\left(\dfrac{\pi}{2}-\theta\right)=\sec(\theta) \] \(\Leftarrow\Leftarrow\) It's a simple computation.

\[ \tan\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{\sin\left(\dfrac{\pi}{2}-\theta\right)}{\cos\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{\cos(\theta)}{\sin(\theta)}=\cot(\theta) \] \[ \cot\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{\cos\left(\dfrac{\pi}{2}-\theta\right)}{\sin\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{\sin(\theta)}{\cos(\theta)}=\tan(\theta) \] \[ \sec\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{1}{\cos\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{1}{\sin(\theta)}=\csc(\theta) \] \[ \csc\left(\dfrac{\pi}{2}-\theta\right) =\dfrac{1}{\sin\left(\dfrac{\pi}{2}-\theta\right)} =\dfrac{1}{\cos(\theta)}=\sec(\theta) \]

Notice that switching from an angle to its complementary angle interchanges each trig function with its complementary function: \(\sin\) with \(\cos\), \(\tan\) with \(\cot\), \(\sec\) with \(\csc\). This is, in fact, why they are called “co”-functions.

Supplementarity Identities

The supplementary angle for \(\theta\) is \(180^\circ-\theta\) or \(\pi-\theta\). \[ \sin(\pi-\theta)=\sin(\theta) \qquad \cos(\pi-\theta)=-\cos(\theta) \] \(\Leftarrow\Leftarrow\) Read it! It simply explains the plot.

prop_supp_anim

Looking at the figure, the ray at the angle \(\theta\) hits the circle at the point \((x,y)\), while the ray at the angle \(\pi-\theta\) hits the circle at the point \((-x,y)\). So: \[ \sin(\theta)=\dfrac{y}{r} \quad \text{while} \quad \sin(\pi-\theta)=\dfrac{y}{r}=\sin(\theta) \] and \[ \cos(\theta)=\dfrac{x}{r} \quad \text{while} \quad \cos(\pi-\theta)=\dfrac{-x}{r}=-\cos(\theta) \]

The supplementarity identities can also be understood by comparing the plot of \(\sin(\theta)\) with that of \(\sin(\pi-\theta)\) and the plot of \(\cos(\theta)\) with that of \(\cos(\pi-\theta)\).

prop_supp_sin_anim
\(\sin(\theta)=\sin(\pi-\theta)\).
prop_supp_cos_anim
\(\cos(\theta)=-\cos(\pi-\theta)\).

As a consequence:

\[ \tan(\pi-\theta)=-\tan(\theta) \qquad \cot(\pi-\theta)=-\cot(\theta) \] \[ \sec(\pi-\theta)=-\sec(\theta) \qquad \csc(\pi-\theta)=\csc(\theta) \quad \] \(\Leftarrow\Leftarrow\) It's a simple computation.

\[ \tan(\pi-\theta)=\dfrac{\sin(\pi-\theta)}{\cos(\pi-\theta)} =\dfrac{\sin(\theta)}{-\cos(\theta)}=-\tan(\theta) \] \[ \cot(\pi-\theta)=\dfrac{\cos(\pi-\theta)}{\sin(\pi-\theta)} =\dfrac{-\cos(\theta)}{\sin(\theta)}=-\cot(\theta) \] \[ \sec(\pi-\theta)=\dfrac{1}{\cos(\pi-\theta)} =\dfrac{1}{-\cos(\theta)}=-\sec(\theta) \] \[ \csc(\pi-\theta)=\dfrac{1}{\sin(\pi-\theta)} =\dfrac{1}{\sin(\theta)}=\csc(\theta) \qquad \]

Given that \[ \sin60^\circ=\dfrac{\sqrt{3}}{2} \quad \text{and} \quad \cos60^\circ=\dfrac{1}{2} \] find \(\sin(-30^\circ)\) and \(\cos(-30^\circ)\).

We use both the parity and complementarity identities for \(\sin(\theta)\) and \(\cos(\theta)\).
Applying the parity identity and then the complementarity, we see: \[ \sin(-30^\circ) = -\sin(30^\circ)=-\cos(60^\circ)=-\dfrac{1}{2} \] Similarly: \[ \cos(-30^\circ)=\cos(30^\circ)=\sin(60^\circ)=\dfrac{\sqrt{3}}{2} \]

Given that \[ \sin60^\circ=\dfrac{\sqrt{3}}{2} \quad \text{and} \quad \cos60^\circ=\dfrac{1}{2} \] find \(\sin(-150^\circ)\).

Go from \(-150^\circ\) to \(150^\circ\) to \(30^\circ\) to \(60^\circ\).

\(\sin(-150^\circ) = -\dfrac{1}{2}\)

We applying the parity identity for \(\sin\), then the supplementarity identity for \(\sin\) and finally the complementarity identity: \[ \sin(-150^\circ)=-\sin(150^\circ)=-\sin(30^\circ) =-\cos(60^\circ)=-\dfrac{1}{2} \]

© MYMathApps

Supported in part by NSF Grant #1123255